

Title of the WG:

CIGTE

"Technical and economical features of Hydro Pumped storage power plants (HPSPPs) in power systems"

The WG applies to field of system distributed generation and real-time system operation activities (SC C6)

1st KICK-OFF-MEETING FOR REGIONAL WG 04

Location: Zagreb, Croatia

Participants:

- Branko Horvat (The velebit hydro pumped storage power plant (HPSPP) in Croatia: operating principles, control and renovations);
- Vedran Jurić (Basic Characteristics of the Pumped-Storage Power Plant Vinodol);
- Kastelan (The first pumped storage hydropower plant in Slovenia PSHPP AVČE);
- Tomislav Plavšić (Hydro Pumped Storage Power

Plants perspectives in SEERC Region);

- Massimo Rebolini (Hydro Pumping in Italy);
- Svarc (Impact of the RES on the operation of HPSPP Velebit);
- Mladen Zeljko (Models for Integration of HPSP in Power System – Needs and Posibilities for PSHP Construction in Croatia)

SECOND SEERC CONFERENCE in Kyiv 2018

Report: "Hydro Pumped Storage Power Plants

perspectives in SEERC Region"

Authors: T. Plavšić, V. Valentić, D. Franković Croatian Transmission System Operator Ltd.,

Zagreb, Croatia;

Tehnical University Rijeka, Croatia

Technical and economic indices of PHPP and lithium-ion battery systems

№	Technical specifications	Values	
		PHPP	Lithium Ion Battery Energy Storage
	Technical specifications		
1.1	Storage Duration, hours:		
	- during generation	4	4
	– during consumption	5	4
1.2	Capacity, MW:		
	– generation mode	4.125=500	500
	– consumption mode	4.135=540	500
1.3	Station power range:		
	– generation mode	7% to 100%	0 to 100%
	- consumption mode	18% to 100%	0 to 100%
1.4	Transient state quantity:		
	- per day	20	3
	- per year	6000	1000
.5	Power ramp-up duration, minutes:		
1.5.1	generation mode:		
	– from standstill	1-3	Up to 1 sec
	- from hot reserve state	0,5-1	
1.5.2	consumption mode:		
	– from standstill	1-6	Up to 1 sec
	– from hot reserve state	0,5-1	
.6	Cycle efficiency, %	78	92
.7	Service life of equipment, years	40	10/25*
.8	Engineering and Installation Time, years	4,5	1,0
	Price indices		
.1	Unit cost 1 kW, USD	1400	1900/3400
.2	General cost, million USD	700	950/1700
.3	Equipment disposal costs (% from general costs)	Up to 0	Up to 10

^{*} With a service life of 25 years, the batteries will be replaced with new ones on 9th year and 17th year of operation.

Scope of RWG 04:

- Basic characteristics of functioning HPSPPs which work in the electric energy system in the countries of south east European region (done);
- 2. The basic issues, which are solved by HPSPPs in the electric energy system (done);
- Participation of HPSPPs in generation, control of power and optimization of the daily load curve (done);
- 4. Work of HPSPPs in the electric energy system with nuclear, wind and solar power plants (to be updated);
- Automation of the control processes of HPSPPs and SCADA power system (to be updated);
- Economic aspects of attraction HPSPPs to optimization of the daily load curve of the electric energy system (to be updated);
- Regional particularities (to be discussed);
- 8. Report (November 2021).

Participants of RWG4 in 2020, registration in KMS:

- NC Ukraine:
- NC Austria;
- NC Croatia;
- NC Italy;
- NC Slovenia

Meeting of RWG4 March 2021 with updated materials

We will send data and information for discussion of report

